

Fig. 8.12 Plot of δ_{p} against m_{d} . From Wood (1978).

Then the value of the non-dimensional parameterd ϕ_s is calculated using the equation

$$\phi_{\rm s} = 2/(\sqrt{m_{\rm e}} + 1/\sqrt{m_{\rm e}}) \tag{8.17}$$

This parameter was derived for square panels with identical beams and columns, and a correction factor Δ_{ϕ} must be determined for non-rectangular panels with unequal beams and columns, using Fig. 8.13 in which $\mu_{\rm p}$ is defined

$$\mu_{\rm p} = \frac{\text{lowest beam plastic moment}}{\text{lowest column plastic moment}}$$
(8.18)

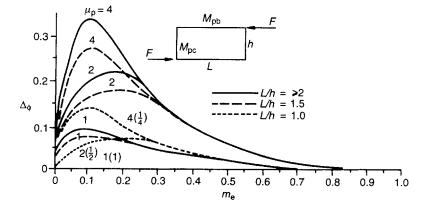


Fig. 8.13 Design chart for racking loads: optional correction Δ_{ϕ} added to Φ_{s} ($\mu=M_{pb}/M_{pc}$). From Wood (1978).

- If $\mu_p \ge 1$ (strong beams) use the chart directly.
- If $\mu_p < 1$ (weak beams) and L/h=1 use μ_p value in brackets.
- If $\mu_p < 1$ (weak beams) and L/h > 1 use $\mu_p = 1$ curve.

Finally the design strength *F* can be determined using

$$F = (\phi_{\rm s} + \Delta_{\phi}) \left[4 \, (\text{smaller } M_{\rm p}) / h \right. \\ \left. + \frac{1}{2} \delta_{\rm p} f_{\rm k} t L / \gamma_{\rm m} \right] / 1.2$$
(8.19)

where the factor 1.2 is an additional factor of safety introduced by Wood for design purposes and M_p is the effective plastic moment given by $Z\sigma_y/\gamma_{ms}$. For design purposes the design strength must be equal to or greater than the design load as shown in Chapter 4.

(c) Example

Assume the following dimensions and properties:

- Panel height=2m
- Panel length=4m
- Panel thickness=110mm
- Characteristic strength of panel=10N/mm²
- Partial safety factor for masonry=3.1
- Section modulus for each column=600 cm³
- Section modulus for each beam=800 cm³
- Yield stress of steel=250N/mm²
- Partial safety factor for steel=1.15
- Effective plastic moment for beam=(800×10³)×250/(1.15×10⁶)

- Effective plastic moment for column=130kN/m
- μ_p=134
- *L/h=*2

These give

$$m_{\rm d} = \frac{8 \times 130 \times 10^6 \times 3.1}{10 \times 110 \times 4^2 \times 10^6} = 0.18$$

From Fig. 8.12, δ_p =0.25. So

$$m_{\rm e} = 0.24/0.25 = 0.96$$

$$\phi_{\rm s} = 2/(\sqrt{0.96} + 1/\sqrt{0.96}) = 1.0$$

From Fig. 8.13, $\Delta_{\phi} = 0$.